
 Volume 2, Issue 2 (2014) 366-372 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 366

IJARI

Implementation of Kalman Filter Using Vhdl
Jolly Baliyan

*
, Atiika Aggarwal, Ashwani Kumar

Department of Electronics & Communication Engineering, Meerut Institute of Technology, Meerut, India

 Abstract

The main task in object tracking is to filter the movement information from
undesired dynamic objects because this information is considered as noise. To
cope with these difficulties the implementation of edge segment tracking (EST)
algorithm based kalman filter is presented which is used to track the desired
dynamic object and to filter the noise. The estimation of current state depends

on the variables i.e. time, velocity, covariance and noise mainly. Segmenting
objects is capable of identifying moving objects in image sequence. One object
may consist of several parts with different motion as object motion and shape
are less consistent within frames. The hardware implementation of kalman
filter is done on FPGA (Virtex 5) using VHDL on Xilinx ISE simulator in the
range of MHz clock frequency and tested with an ADC and DAC which were
integrated into the design to support analog signals at the input and output of
the system.

1. Introduction

Kalman Filter follows an EST algorithm. Due to the
presence of real time input there is a need of result
optimization (F. A. Faruqi at el, 1980). Kalman filter is used

to estimate the state of a linear system where state assumed
to be distributed by a Gaussian. Kalman filter is derived
from a principle which explains a property that specifies
that product of two Gaussian distribution is another
Gaussian distribution. Kalman Filter using state techniques
as state space methods helps in simplifying the
implementation of the filter in the discrete domain. As the
inputs are not fixed so the location of object is shown in

terms of probability. By predicting the object position from
the previous information and verifying the existence of the
object at the predicted position. Estimation is performed to
reach to the real value by the help of sampling process
which further get extended for the larger domain.
Estimation Filter theory states that the state vector is
estimated for a given time based upon all past
measurements. It is an optimal algorithm because of its less

computational requirements. There are two approaches to
implement kalman filter either as hardware or software.
There are two types of architecture can be possible for
kalman filter and they are:

Loop Rolled Architecture

Fig: 1. Loop rolled architecture

Corresponding Author,
E-mail address: jollychaudhary1111@gmail.com
All rights reserved: http://www.ijari.org

In loop architecture common hardware is using for

common logic as division, multiplication, etc which is
reducing the hardware (F. A. Faruqi et al, 1980).

Loop Unrolled Architecture

Fig: 2. Loop unrolled architecture

In loop unrolling architecture the area get increased as
number of blocks is increasing due to the use of separate
hardware for different states. But with that the throughput is
increasing as well with the speed (F. A. Faruqi et al, 1980).

The further sections describe the implementation of
EST algorithm was designed and implemented within the
FPGA and tested with an ADC and DAC which were

integrated into design to support analog signals at the input
and output of the system.

2. Previous Work Analysis

When we analyse the previous works it is noticed that
main concentration is done on the hardware area and the
speed of the filter as in reference. Many hardware and
software solutions have been proposed to achieve this
objective. An Algebraic transformation method is proposed
to reduce the differential equation and to obtain explicit
expression for the filter gains which results in a substantial
reduction of the computer burden involved in estimating the

targets states (Y. Bar-Shalom et al, 1993). After that a
mapping methodology is proposed to delivering systolic and
wave front array which allow the fastest pipelining rates (S.
Y. Kung et al, 1991). Many more approaches were proposed
but by seeing the era the major design issues arrive of
optimizing area and power consumption and reduction of
mean squared error. Then Kalman Filter is introduced which
reduces the mean squared error. The overall objective is to
estimate x (k).The difference between the estimate of X^ (k)

and x (k) itself is termed the error; f (e(k)) = f(x(k)-X^(k))

Article Info

Article history:
Received 5 March 2014
Received in revised form
20 April 2014
Accepted 28 May 2014

Available online 15 June 2014

Keywords

Kalman Filter,
FPGA,
Prediction Model,
Measurement Model, VHDL.

 Volume 2, Issue 2 (2014) 366-372 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 367

IJARI

this function should be positive and increase monotonically
(L. P. Maguire et al 1991). An error function which exhibits
these characteristics is the squared error function and
represent as f (e(k)) = (x(k)-X^(k))2. For the ability of the
filter to predict different input data over a period of time a

metric is the expected value of the error function. Therefore
it represent as E [f(e(k))]. This result in the mean squared
error as e(t) = E[e2(k)].

3. Implementation

3.1 Functional Description of Designed Kalman

Filter using (EST) algorithm
A basic top module block diagram of kalman filter is

shown in figure 3. This is a looped rolled architecture of
kalman filter which is used to implement the EST
algorithm.

Fig: 3. A basic diagram of kalman filter

Where, Pinitial is the predicted variance

Xinitial is the predicted state

Pest is the estimated variance

Xest is the estimated state

Kalman filter has two models as process model and

measurement model. The whole procedure consist
three steps and they are:
 Prediction

 Measurement

 Correction

Prediction is the state which is based on the previous state.

Measurement is calculated by the help of measurement
model.
Correction is estimated by the help of kalman gain, which
got change with every sample.
The equation can be shown as:
x (k+1) = A x (k) + B u (k) + w (k) ,
This equation is showing the prediction state for the time
(k+1) where,

A is the state transition matrix,
B is the input transition matrix,
u (k) is the uncontrolled vector which is taken zero for the
simplification,
w (k) is the process additive noise
Y (k+1) = C x (k+1) + v (k+1),
This is the measurement equation where,
C is the observation matrix ,

v (k+1) is the measurement additive noise
X^(k+1) = x (k+1) + K (k+1)[Y(k+1) – x(k+1)]
This equation is showing the corrected estimated output.

Fig: 4. Block diagram showing three basic states of kalman
filter

Kalman filter equation divided into two groups:
1. Time Update

2. Measurement Update

Time update equations can be represented as:
X^(k/k-1) = AkX^(k-1/k-1)
P(k/k-1) = AkP(k-1/k-1)Ak

T + Q(k)
Measurement equations can be represented as:
X^(k/k) = X^(k/k-1) + Kk [Y(k) – CkX^(k/k-1)]
Kk = P(k/k-1) Ck

T (Ck P(k/k-1)Ck
T + R(k))-1

P(k/k) = (I – KkCk) P(k/k-1)
Where, X^(k/k-1) is predicted state

P(k/k-1) is predicted variance
X^(k/k) and X^(k-1/k-1) are updated state for (k-1) and k
samples
P(k/k) and P(k-1/k-1) are updated variance for (k-1) and k
samples
Kk is the kalman gain for state k
By assuming the process noise w(k) and measurement noise
v(k) is uncorrelated and process noise is zero mean white

noise having known covariance matrices.
E [w(k), w(l)T] = Q(k) if k=l;
 = zero otherwise;
E [v(k), v(l)T] = R(k) if k=l;
 = zero otherwise;
E [w (k), v (k)] = zero for all values of k and l
Where Q(k) is process covariance noise and R(k) is
measurement covariance noise. As we the initial value of

both mean and covariance matrix are unknown so we are
assuming the initial value of state as
X^(0/0) = E{x(0)} and
 P (0/0) = E[{x(0) – X^(0)}{x(0) – X^(0)}T]
E[||x(k+1) – X^(k+1)||2] = E[{x(k+1)-X^(k+1)}*
{x(k+1)-X^(k+1)}T]
A. Derivation of implemented ORDP algoritm

The estimation of state X^(k+1) based on the observations

up to time k, z1,z2…,zk, namely is considered (M. Munu et
al, 1992).
X^(k+1) /Zk .
X^(k+1/k) = E[x (k+1)/z1,… z k] = E[x(k+1)/Zk]
X^(k+1/k) = E[x (k+1)/Z k]
 = E[Ax(k)+Bu(k)+w(k)/Zk]

 Volume 2, Issue 2 (2014) 366-372 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 368

IJARI

 = AE[x(k)/Zk] + Bu(k) +E[w(k)/Zk]
X^ (k+1/k) = A X^(k/k) + Bu(k)
P (k+1/k) = E [{x(k+1) – X^(k+1/k)}{x(k+1) –
 X^(k+1/k)}T/Zk]
 = E [{x(k) –A X^(k/k)} {x(k) –

 ATX^(k/k)T}]
 = AP (k/k) AT + Q (k)
X^(k+1/k+1) =K’k+1X^(k+1/k) + Kk+1Y(k+1)
Where K’k+1 and Kk+1 are weighting or gain matrices
E [X^(k+1/k+1)] = E[K’k+1X^(k+1/k) + Kk+1Y(k+1)]
 = E [K’k+1X^(k+1/k) + Kk+1C (k+1) x
(k+1)
 + Kk+1v (k+1)]

 = K’k+1 E [X^(k+1/k)] + Kk+1 C (k+1)*
 E [x (k+1)] + Kk+1 E [v (k+1)]
E [X^(k+1/k)] = E [A X^(k/k) + Bu(k)]
 = A E [X^(k/k)] + B u (k)
 = E [x (k+1)]
 E [X^(k+1)] = E[K’k+1 + Kk+1C]E[x(k+1)]
 K’k+1 + Kk+1 C = I
 Or K’k+1 = I – Kk+1 C

X^(k+1/k+1) = (I – Kk+1C) X^(k+1/k) + Kk+1Y (k+1)
 = X^(k+1/k) + Kk+1[Y (k+1) – C
X^(k+1/k)]
P (k+1/k+1) = E[{x(k+1) –X^(k+1/k+1)}{x(k+1)
 – X^(k+1/k+1)}T/Zk]
 = (I – Kk+1C) E[{x(k+1) –X^(k+1/k)}
 {x(k+1) – X^(k+1/k)}T] (I –Kk+1C)T

 + Kk+1E[v(k+1)v(k+1)T] Kk+1
T +

 2(I – Kk+1C) E[{x(k+1)-X^(k+1/k)}
 v(k+1)T]Kk+1

T
And with
E [v (k+1) v (k+1) T] = R (k)
E [{x (k+1) – X^(k+1/k)} {x (k+1) – X^(k+1/k)} T]
 = P (k+1/k)E [{x (k+1) – X^(k+1/k)} v (k+1) T] = 0
We get
P (k+1/k+1) = (I – Kk+1C) P(k+1/k) (I – Kk+1C)T

 + Kk+1Q (k+1) Kk+1
T

X(k)= [X1(k), X2(k), X3(k), X4(k)]T
Y(k)= [Y1(k), Y2(k)]T
W (k) = [0, U1 (k), 0, U2 (k)] T
V (k) = [V1 (k), V2 (k)] T
Pl (k/k-1) = A P (k-1/k-1) AT + Q (k-1)
 X^l (k/k-1) = AX^(k-1/k-1)
 X^(k) = C X^l (k/k-1)

G (k) = Pl (k/k-1) CT [CP1 (k/k-1) CT + R (k)]-1
X^(k/k) = X1(k/k-1) + G (k) [Y (k) – X^(k)]
P (k/k) = Pl (k/k-1) – G (k) C Pl (k/k-1)
Where

G(k) = , R(k) =

P(k/k) =

P1(k/k-1) =

Q(k) =

X^1(k/k-1) = [X11 X12 X13 X14],
X^(k/k) = [X1 X2 X3 X4],
Y(k) = [Y1, Y2]

Pl (k/k-1) is the priori error covariance estimate,
X1(k/k- 1) is the priori state estimate, Y(k) is the output
estimate, G (k) is the Kalman gain, X (k/k) is the posterior
state estimate, and

P (k/k) is the posterior error covariance estimate. Q(k)

= E[W(k)WT(k)] is the system noise covariance matrix and
R(k) = E[V(k)VT(k)] is the measurement noise covariance
matrix σ1

2 = E[U1
2(k)] and σ2

2(k) = E[U2
2(k)] are the

variances of T multiplied by the radial and angular
acceleration respectively and σρ

2(k) = E[V1
2(k)] and σθ

2(k)
= E[V2

2(k)] are the variances of T multiplied by the radial
and angular measurement noise respectively. The tracking
systems under consideration utilize sensors that provide

measurements of range and bearing. Vehicle modelling is
related to process model which includes two variables range
and bearing. Present model is designed to track an object
moving with constant speed, hence there should be four
variables range, rate of change of range, bearing and rate of
change of bearing. Sensor modelling is related to
measurement model which includes only two variable range
and bearing.

3.2 Architecture Hardware Design Approaches of

Kalman Filter Implementation on FPGA

Fig: 5. Block diagram of complete system

This shows the complete kalman filter system,
including an FPGA based kalman filter, analog to digital
converter (ADC), and digital to analog converter (DAC).
The goel of this part of the project is to produce a system

where data can be streamed into and out of kalman filter as
analog signals and processed into real time. The ADC
connects of the kalman filter by the ADC controller,
designed within the FPGA. The ADC controller directs the
ADC when to take a sample of the analog input , and sends
the digital value to the input of kalman filter . Like the
ADC, the DAC connects to the kalman filter using a FPGA
design, the DAC controller. This module sends the digital
output of the kalman filter to the DAC, and then instructs it

when to output that value as an analog signal, this completes
the system.

The responsibility of this kalman filter design is to
reject higher frequencies signals from passing through the
system, but allow lower frequencies to pass unaffected.

3.1.1 kalman Filter

The kalman filter is an important part of this project.
The purpose of kalman filter is to use measurements

observed over time, which contains random variations of
noise, and produce a value that is accurate to the true values
of the measurements. It does this by predicting a value,
estimating the uncertainty of the predicted value, and
computing a weighted average of the predicted value and
calculated value. The kalman filter first predicts the next

 Volume 2, Issue 2 (2014) 366-372 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 369

IJARI

value as well as the error covariance. When the next value
comes into the filter, the kalman gain is computed, the
estimate is updated with observed value, and the error
covariance is updated. This helps to get rid of the noise
within the signal.

A kalman filter is different from other filters such as
low pass or high pass filters. These filters are linear, time
invariant systems which are designed with frequency
response in mind. These filters tend to be single input single
output systems. In this the kalman filter we are designing
could be replaced by one of these filters because it has all
the characeristics just described. However in this we show
how an FPGA based kalman filter could be beneficial for

the locator device. The kalman filter in the locator device is
designed with the characteristics of a normal kalman filter.
These characteristics involve being a multiple input,
multiple output system. Also they are linear, time variant
systems which are designed with a mean square error
approach.

The way in which Locator device uses its kalman filter
is by using multiple input signals. Each of these signals by

themselves could be ued to determine location. However the
system cannot rely on any one source because if different
scenarios, each of these input signals could be contaminated
by different amounts of noise. So, kalman filter takes the
information from all these signals, uses it to reduce the
noise and produces its best estimate for the location of the
first responders. A kalman filter is used to read the
transmitter and get rid of the noise and return back the exact

location of a particular person.

3. 2.2 Designing the Fpga Based Kalman Filter

Since the design was quite complicated, it was
determined that the best approach was to break the design
down into small pieces.

3. 2.2.1 Matrix Multiplications

The first obstacles presented were the three matrix
multiplications. There were certain instances where 3x3
matrix multiplications are required. Some of the multipliers

are equipped with by single multiplications. So there is not
enough multipliers are available in the FPGA. We came to
the conclusion that we had to multiplex what values are
being multiplied at certain times, so that each multiplier
could be used more than once. The entire 3x3 matrix
remains the same for these calculations but the row of 3 is
what is getting multiplexed for another 3 x 3 matrix. A
module was created to perform the 9 multiplications

between a 1x3 matrix and a 3x3 matrix. In order to perform
a matrix multiplication with two 3x3 matrices, this module
needs to be used 3 times. For the multiply function we have
used the logic of complementing the negative value then we
get the 32 bit product of two 16bit operand. This multiplier
function is used for the matrix multiplication.

prod1 <= multiply (row1, col11) + multiply (row2,

col21) + multiply (row3, col31);

prod2 <= multiply (row1, col12) + multiply (row2,

col22) + multiply (row3, col32);

prod3<=multiply (row1, col13) + multiply (row2,

col23) + multiply (row3, col33);

Fig: 6. Multiplexing for count 3-8

3. 2.2.2 Division
Another task is we dividing two values within the

kalman filter. Performing division is adifficult task because
it taks a lot VHDL code and uses a lot of resources. It was

decided that the best approach was to use the built in core
generator in the Xilinx software that the VHDL design was
being written in. The core generator can create a number of
different functions and it uses an efficient amount of
resources. Once we created this module, weworked to
include it within our Kalman filter design. The schematic of
the function can be seen below:

Fig: 7. Divide function

Two 16 bit signed values are entered into the function.
A 16 signed bit quotient is output, as well as a remainder.

This module is very useful within our design, and was quite
simple to implement.

3. 2.2.3 Using Registers To Store Previous Values

The use of registers was very important to the design.
Since the design uses previous values needed to be stored in
registers. Also, the values in these registers have to be
loaded into the design along with the input. Without using
registers and loading values in on each clock value, the

design would cause a continuous loop. This happens
because the output changes, the current calculations would
change causing the output to change again, and this would

 Volume 2, Issue 2 (2014) 366-372 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 370

IJARI

keep happening. So, once we knew we neede to use
registers to store previous values, a block diagram was first
to better understand how this could be done.The block
diagram proved to be very helpful. A simple project was
first created to make sure the process worked before it was

added to the overall project. This turned out to be a success
and we could clearly see values being stored in registers,
and then loaded from registers. The block diagram for using
the registers can be seen below. On the rising edge of the
clock, or for testing purposes, when a button is pressed, flip
flop load the previous output as well as the current input.
After going through the next state logic, the output values
are stored in the registers and remain their until the next

load.

Fig: 8. Main block diagram

3.2.2.4 Using the Kalman Filter with Real Time Signals
The goal of this project is to be able to send an analog

signal into the project, and output the resulting analog

signal . To successfully do this, it is necessary to use

an analog to digital converter (ADC) and digital to

analog converter (DAC) to stream data into and out of

the system using analog signals.

-- Control for temp

process(clk)

begin

if rising_edge(clk) then

if count = 0 then

if load = '1' then

temp <= data;

elsif currentstate = Send then

temp <= temp(14 downto 0) & '0';

end if;

end if;

end if;

end process;

-- Next State Logic

process(currentstate, load, regcount)

begin

case currentstate is

when Idle =>

if load = '1' then

nextstate <= Low;

else

nextstate <= Idle;

end if;

when Low =>

nextstate <= Send;

when Send =>

if regcount = 15 then

nextstate <= High;

else

nextstate <= Send;

end if;

when High =>

nextstate <= Idle;

end case;

end process;

Fig: 9. State machine of DAC

Fig: 10. State machine of ADC

--Next state logic

process(currentstate, load, regcount)

begin

case currentstate is

when Idle =>

if load = '1' then

nextstate <= CSLow;

else

nextstate <= Idle;

end if;

when CSLow =>

 Volume 2, Issue 2 (2014) 366-372 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 371

IJARI

nextstate <= Receive;

when Receive =>

if regcount = 15 then

nextstate <= CSHigh;

else

nextstate <= Receive;

end if;

when CSHigh =>

nextstate <= Idle;

end case;

end process;

-- Control for temp

process(clk)

begin

if rising_edge(clk) then

if nextstate = Receive then

if count = 0 then

temp <= temp(14 downto 0) & Sdata;

elsif count = 3 then

temp(0) <= Sdata;

end if;

end if;

end if;

end process;

-- Load 12 data bits to data

process(clk)

begin

if rising_edge(clk) then

if currentstate = CSHigh then

data <= temp(11 downto 0);

end if;

end if;

end process;

CS is what controls when a sample is taken. CS is
active low and tells the ADC to create a 16 bit value out of
the analog sample. Like the DAC, we created a load signal
to tell the ADC controller that an input is desired. When
load is high, CS goes low on the rising edge of sclk. This
allows for the setup time to be achieved before the first
value is input on the falling edge of the clock. Temp shifts
in one bit at a time on the rising edge of sclk and after 15
cycles, temp is ready to output a 16 bit value, and CS is sent

high. The values are available on the falling edge of sclk,
but taking them on the rising edge assures that they are
valid. The only bit that is taken on the falling edge is the
first bit, and this is because it is sent along with the second
bit on the first falling edge. The values of Sdata were shifted
into temp.

The first step to this process is using a DAC to output
the values of the Kalman Filter as an analog signal. The first

thing we had to do was to choose which DAC to work with.
The DAC is of 12-bit instead of a 16-bit DAC means that
there is a loss of precision, but since only the least

significant bits are lost, the difference in precision does not
affect the performance of the kalman filter.

Fig: 10. State machine of ADC to DAC

-- Next State Logic

process(currentstate, start, count25K)

begin

case currentstate is

when Idle =>

if start = '1' then

nextstate <= In_Out;

else

nextstate <= Idle;

end if;

when In_Out =>

if count25K = 20 then

nextstate <= LoadHigh;

else

nextstate <= In_Out;

end if;

when LoadHigh =>

if count25K = 22 then

nextstate <= LoadLow;

else

nextstate <= LoadHigh;

end if;

when LoadLow =>

if count25K = 26 then

nextstate <= Hold;

else

nextstate <= LoadLow;

end if;

when others =>

if count25K = 2000 then

nextstate <= In_Out;

else

nextstate <= Hold;

end if;

end case;

end process;

 Volume 2, Issue 2 (2014) 366-372 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 372

IJARI

4. Conclusion

In conclusion, we have created a successful Kalman
Filter, which interfaces with an ADC and DAC to form a
complete system that streams analog data in and out. We

also created an ADC controller and DAC controller so that
the Kalman Filter, ADC and DAC could be integrated
together and used for testing purposes.A complete system
like the one we have built can be altered, and added onto, to

perform the tasks of the Kalman Filter in the PPL(Precision
Personal Locator) system, and can be included within the
implementation of the actual system to process the data in
real time. What all of this means is that another group can
learn from everything that has been documented here to

enhance our design to support a more complicated version
of a Kalman Filter.

References

[1] F.A. Faruqi and R.C. Davis, Kalman Filter design for
target tracking, IEEE Trans. Aerosp. Electron. Syst.,
AES-16, 500-508, 1980

[2] Y. Bar-Shalom and X. R. Lin, Estimation and tracking:
principles, techniques, and software, Artech House,
1993, 417-483

[3] S. Y. Kung and J. N. Hwang, Systolic array designs for

Kalman Filtering, IEE Trans., Signal Processing, 171-
182, 1991

[4] L. P. Maguire and G. W. Irwin, Transputer
implementation of Kalman Filter, IEEE Proc., 138,
355-362, 1991.

[5] M. Munu, I. Harrison, D. Wilkin, and M. S. Woolfson,
Comparison of adaptive target-tracking algorithms for

phased-array radar, IEE Proc. F. Commun, Radar and

Signal, 139, 336-342.
[6] D. P. Atherton and H. J. Lin, Parallel implementation

of IMM tracking algorithm using transputers, IEE
Proc.-Radar, Sonar Navig., 141, 325-332, 1994

[7] J. M. Jover, T. Kailath, A parallel architecture for
Kalman Filter measurement update and parameter
estimation, Automatica, 22, 32-57, 1986

[8] Song Ci. Sharif, H (2005) Performance Comparison of

Kalman Filter based approaches for energy efficiency
in wireless sensor networks, IEEE conf.: on Computer
Systems and Applications.

