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     Abstract 

The main task in object tracking is to filter the movement information from 
undesired dynamic objects because this information is considered as noise. To 
cope with these difficulties the implementation of edge segment tracking (EST) 
algorithm based kalman filter is presented which is used to track the desired 
dynamic object and to filter the noise. The estimation of current state depends 

on the variables i.e. time, velocity, covariance and noise mainly. Segmenting 
objects is capable of identifying moving objects in image sequence. One object 
may consist of several parts with different motion as object motion and shape 
are less consistent within frames. The hardware implementation of kalman 
filter is done on FPGA (Virtex 5) using VHDL on Xilinx ISE simulator in the 
range of MHz clock frequency and tested with an ADC and DAC which were 
integrated into the design to support analog signals at the input and output of 
the system. 

1. Introduction 

Kalman Filter follows an EST algorithm. Due to the 
presence of real time input there is a need of result 
optimization (F. A. Faruqi at el, 1980). Kalman filter is used 

to estimate the state of a linear system where state assumed 
to be distributed by a Gaussian. Kalman filter is derived 
from a principle which explains a property that specifies 
that product of two Gaussian distribution is another 
Gaussian distribution. Kalman Filter using state techniques 
as state space methods helps in simplifying the 
implementation of the filter in the discrete domain. As the 
inputs are not fixed so the location of object is shown in 

terms of probability. By predicting the object position from 
the previous information and verifying the existence of the 
object at the predicted position. Estimation is performed to 
reach to the real value by the help of sampling process 
which further get extended for the larger domain. 
Estimation Filter theory states that the state vector is 
estimated for a given time based upon all past 
measurements. It is an optimal algorithm because of its less 

computational requirements. There are two approaches to 
implement kalman filter either as hardware or software. 
There are two types of architecture can be possible for 
kalman filter and they are: 

Loop Rolled Architecture 

 

Fig: 1. Loop rolled architecture 
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In loop architecture common hardware is using for 

common logic as division, multiplication, etc which is 
reducing the hardware (F. A. Faruqi et al, 1980). 

Loop Unrolled Architecture 

 

Fig: 2. Loop unrolled architecture 

In loop unrolling architecture the area get increased as 
number of blocks is increasing due to the use of separate 
hardware for different states. But with that the throughput is 
increasing as well with the speed (F. A. Faruqi et al, 1980). 

The further sections describe the implementation of 
EST algorithm was designed and implemented within the 
FPGA and tested with an ADC and DAC which were 

integrated into design to support analog signals at the input 
and output of the system. 

2. Previous Work Analysis 

When we analyse the previous works it is noticed that 
main concentration is done on the hardware area and the 
speed of the filter as in reference. Many hardware and 
software solutions have been proposed to achieve this 
objective. An Algebraic transformation method is proposed 
to reduce the differential equation and to obtain explicit 
expression for the filter gains which results in a substantial 
reduction of the computer burden involved in estimating the 

targets states (Y. Bar-Shalom et al, 1993). After that a 
mapping methodology is proposed to delivering systolic and 
wave front array which allow the fastest pipelining rates (S. 
Y. Kung et al, 1991). Many more approaches were proposed 
but by seeing the era the major design issues arrive of 
optimizing area and power consumption and reduction of 
mean squared error. Then Kalman Filter is introduced which 
reduces the mean squared error. The overall objective is to 
estimate x (k).The difference between the estimate of X^ (k) 

and x (k) itself is termed the error; f (e(k)) = f(x(k)-X^(k)) 
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this function should be positive and increase monotonically 
(L. P. Maguire et al 1991). An error function which exhibits 
these characteristics is the squared error function and 
represent as f (e(k)) = (x(k)-X^(k))2. For the ability of the 
filter to predict different input data over a period of time a 

metric is the expected value of the error function. Therefore 
it represent as E [f(e(k))]. This result in the mean squared 
error as e(t) = E[e2(k)]. 

3. Implementation 

3.1 Functional Description of Designed Kalman 

Filter using (EST) algorithm 
A basic top module block diagram of kalman filter is 

shown in figure 3. This is a looped rolled architecture of 
kalman filter which is used to implement the EST 
algorithm. 

 
Fig: 3. A basic diagram of kalman filter  

Where, Pinitial is the predicted variance 

Xinitial is the predicted state 

Pest is the estimated variance  

Xest is the estimated state  

Kalman filter has two models as process model and 

measurement model. The whole procedure consist 
three steps and they are:  
 Prediction 

 Measurement 

 Correction 

Prediction is the state which is based on the previous state.  

Measurement is calculated by the help of measurement 
model. 
Correction is estimated by the help of kalman gain, which 
got change with every sample.  
The equation can be shown as: 
x (k+1) = A x (k) + B u (k) + w (k) , 
This equation is showing the prediction state for the time 
(k+1) where, 

A is the state transition matrix, 
B is the input transition matrix, 
u (k) is the uncontrolled vector which is taken zero for the 
simplification, 
w (k) is the process additive noise   
Y (k+1) = C x (k+1) + v (k+1), 
This is the measurement equation where, 
C is the observation matrix , 

v (k+1) is the measurement additive noise 
X^(k+1) = x (k+1) + K (k+1)[ Y(k+1) – x(k+1) ] 
This equation is showing the corrected estimated output. 

 

Fig: 4. Block diagram showing three basic states of kalman 
filter 

Kalman filter equation divided into two groups: 
1. Time Update 

2. Measurement Update 

Time update equations can be represented as: 
X^(k/k-1) = AkX^(k-1/k-1) 
P(k/k-1) = AkP(k-1/k-1)Ak

T + Q(k) 
Measurement equations can be represented as: 
X^(k/k) = X^(k/k-1) + Kk [Y(k) – CkX^(k/k-1)] 
Kk = P(k/k-1) Ck

T (Ck P(k/k-1)Ck
T + R(k))-1 

P(k/k) = (I – KkCk) P(k/k-1)  
Where, X^(k/k-1) is predicted state  

P(k/k-1) is predicted variance 
X^(k/k) and X^(k-1/k-1) are updated state for (k-1) and k 
samples 
P(k/k) and P(k-1/k-1)  are updated variance for (k-1) and k 
samples 
Kk is the kalman gain for state k 
By assuming the process noise w(k) and measurement noise 
v(k) is uncorrelated and process noise is zero mean white 

noise having known covariance matrices. 
E [w(k), w(l)T] = Q(k) if k=l; 
                        = zero otherwise; 
E [v(k), v(l)T] = R(k) if k=l; 
                      = zero otherwise; 
E [w (k), v (k)] = zero for all values of k and l  
Where Q(k) is process covariance noise and R(k) is 
measurement covariance noise. As we the initial value of 

both mean and covariance matrix are unknown so we are 
assuming the initial value of state as 
X^(0/0) = E{x(0)} and 
 P (0/0) = E[{x(0) – X^(0)}{x(0) – X^(0)}T]  
E[||x(k+1) – X^(k+1)||2] = E[{x(k+1)-X^(k+1)}* 
{x(k+1)-X^(k+1)}T] 
A. Derivation of implemented ORDP algoritm 

The estimation of state X^(k+1) based on the observations 

up to time k, z1,z2…,zk, namely is considered (M. Munu et 
al, 1992). 
X^(k+1) /Zk . 
X^(k+1/k) = E[x (k+1)/z1,… z k] = E[x(k+1)/Zk] 
X^(k+1/k) = E[x (k+1)/Z k] 
                  = E[Ax(k)+Bu(k)+w(k)/Zk] 
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                  = AE[x(k)/Zk] + Bu(k) +E[w(k)/Zk] 
X^ (k+1/k) = A X^(k/k) + Bu(k) 
P (k+1/k) = E [{x(k+1) – X^(k+1/k)}{x(k+1) – 
                                        X^(k+1/k)}T/Zk ] 
                = E [{x(k) –A X^(k/k)} {x(k) –  

                                       ATX^(k/k)T}] 
                = AP (k/k) AT + Q (k) 
X^(k+1/k+1) =K’k+1X^(k+1/k) + Kk+1Y(k+1) 
Where K’k+1 and Kk+1 are weighting or gain matrices  
E [X^(k+1/k+1)] = E[K’k+1X^(k+1/k) + Kk+1Y(k+1)] 
                            = E [K’k+1X^(k+1/k) + Kk+1C (k+1) x 
(k+1)                                                         
                                + Kk+1v (k+1)] 

                            = K’k+1 E [X^(k+1/k)] + Kk+1  C (k+1)*  
                            E [x (k+1)] + Kk+1 E [v (k+1)]  
E [X^(k+1/k)] = E [A X^(k/k) + Bu(k)] 
                        = A E [X^(k/k)] + B u (k) 
                        = E [x (k+1)] 
                     E [X^(k+1)] = E[K’k+1 + Kk+1C]E[x(k+1)] 
                     K’k+1 + Kk+1 C = I 
                     Or K’k+1 = I – Kk+1 C 

                   
X^(k+1/k+1) = (I – Kk+1C) X^(k+1/k) + Kk+1Y (k+1) 
                          = X^(k+1/k) + Kk+1[Y (k+1) – C 
X^(k+1/k)] 
P (k+1/k+1) = E[{x(k+1) –X^(k+1/k+1)}{x(k+1)     
                                                 – X^(k+1/k+1)}T/Zk ] 
                     = (I – Kk+1C) E[{x(k+1) –X^(k+1/k)} 
                                   {x(k+1) – X^(k+1/k)}T] (I –Kk+1C)T 

                                  + Kk+1E[v(k+1)v(k+1)T] Kk+1
T +            

                                 2(I – Kk+1C) E[{x(k+1)-X^(k+1/k)} 
                                  v(k+1)T]Kk+1

T 
And with 
E [v (k+1) v (k+1) T] = R (k) 
E [{x (k+1) – X^(k+1/k)} {x (k+1) – X^(k+1/k)} T] 
   = P (k+1/k)E [{x (k+1) – X^(k+1/k)} v (k+1) T] = 0 
We get 
P (k+1/k+1) = (I – Kk+1C) P(k+1/k) (I – Kk+1C)T                 

                                    + Kk+1Q (k+1) Kk+1
T 

X(k)= [X1(k), X2(k), X3(k), X4(k)]T  
Y(k)= [Y1(k), Y2(k)]T  
W (k) = [0, U1 (k), 0, U2 (k)] T  
V (k) = [V1 (k), V2 (k)] T  
Pl (k/k-1) = A P (k-1/k-1) AT + Q (k-1)  
 X^l (k/k-1) = AX^(k-1/k-1)  
 X^(k) = C X^l (k/k-1)  

G (k) = Pl (k/k-1) CT [CP1 (k/k-1) CT + R (k)]-1  
X^(k/k) = X1(k/k-1) + G (k) [Y (k) – X^(k)] 
P (k/k) = Pl (k/k-1) – G (k) C Pl (k/k-1) 
Where 
 
G(k) =       ,     R(k) =   
              
P(k/k) =   

 
P1(k/k-1) =   
                               
Q(k) =  
      
X^1(k/k-1) = [ X11   X12   X13   X14 ], 
X^(k/k) = [ X1  X2  X3  X4 ], 
Y(k) = [ Y1, Y2 ] 

Pl (k/k-1) is the priori error covariance estimate, 
X1(k/k- 1) is the priori state estimate, Y(k) is the output 
estimate, G (k) is the Kalman gain, X (k/k) is the posterior 
state estimate, and  

P (k/k) is the posterior error covariance estimate. Q(k) 

= E[W(k)WT(k)] is the system noise covariance matrix and 
R(k) = E[V(k)VT(k)] is the measurement noise covariance 
matrix σ1

2 = E[U1
2(k)] and σ2

2(k) = E[U2
2(k)] are  the 

variances of T multiplied by the radial and angular 
acceleration respectively and σρ

2(k) = E[V1
2(k)] and σθ

2(k) 
= E[V2

2(k)] are the variances of T multiplied by the radial 
and angular measurement noise respectively. The tracking 
systems under consideration utilize sensors that provide 

measurements of range and bearing. Vehicle modelling is 
related to process model which includes two variables range 
and bearing. Present model is designed to track an object 
moving with constant speed, hence there should be four 
variables range, rate of change of range, bearing and rate of 
change of bearing. Sensor modelling is related to 
measurement model which includes only two variable range 
and bearing. 

3.2 Architecture Hardware Design Approaches of 

Kalman Filter Implementation on FPGA 

 

Fig: 5. Block diagram of complete system 

This shows the complete kalman filter system, 
including an FPGA based kalman filter, analog to digital 
converter (ADC), and digital to analog converter (DAC). 
The goel of this part of the project is to produce a system 

where data can be streamed into and out of kalman filter as 
analog signals and processed into real time. The ADC 
connects of the kalman filter by the ADC controller, 
designed within the FPGA. The ADC controller directs the 
ADC when to take a sample of the analog input , and sends 
the digital value to the input of kalman filter . Like the 
ADC, the DAC connects to the kalman filter using a FPGA 
design, the DAC controller. This module sends the digital 
output of the kalman filter to the DAC, and then instructs it 

when to output that value as an analog signal, this completes 
the system. 

The responsibility of this kalman filter design is to 
reject higher frequencies signals from passing through the 
system, but allow lower frequencies to pass unaffected. 

3.1.1 kalman Filter 

The kalman filter is an important part of this project. 
The purpose of kalman filter is to use measurements 

observed over time, which contains random variations of 
noise, and produce a value that is accurate to the true values 
of the measurements. It does this by predicting a value, 
estimating the uncertainty of the predicted value, and 
computing a weighted average of the predicted value and 
calculated value. The kalman filter first predicts the next 
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value as well as the error covariance. When the next value 
comes into the filter, the kalman gain is computed, the 
estimate is updated with observed value, and the error 
covariance is updated. This helps to get rid of the noise 
within the signal. 

A kalman filter is different from other filters such as 
low pass or high pass filters. These filters are linear, time 
invariant systems which are designed with frequency 
response in mind. These filters tend to be single input single 
output systems. In this the kalman filter we are designing 
could be replaced by one of these filters because it has all 
the characeristics just described. However in this we show 
how an FPGA based kalman filter could be beneficial for 

the locator device. The kalman filter in the locator device is 
designed with the characteristics of a normal kalman filter. 
These characteristics involve being a multiple input, 
multiple output system. Also they are linear, time variant 
systems which are designed with a mean square error 
approach. 

The way in which Locator device uses its kalman filter 
is by using multiple input signals. Each of these signals by 

themselves could be ued to determine location. However the 
system cannot rely on any one source because if different 
scenarios, each of these input signals could be contaminated 
by different amounts of noise. So, kalman filter takes the 
information from all these signals, uses it to reduce the 
noise and produces its best estimate for the location of the 
first responders. A kalman filter is used to read the 
transmitter and get rid of the noise and return back the exact 

location of a particular person. 

3. 2.2 Designing the Fpga Based Kalman Filter 

Since the design was quite complicated, it was 
determined that the best approach was to break the design 
down into small pieces. 

3. 2.2.1 Matrix Multiplications 

The first obstacles presented were the three matrix 
multiplications. There were certain instances where 3x3 
matrix multiplications are required. Some of the multipliers 

are equipped with by single multiplications. So there is not 
enough multipliers are available in the FPGA. We came to 
the conclusion that we had to multiplex what values are 
being multiplied at certain times, so that each multiplier 
could be used more than once. The entire 3x3 matrix 
remains the same for these calculations but the row of 3 is 
what is getting multiplexed for another 3 x 3 matrix. A 
module was created to perform the 9 multiplications 

between a 1x3 matrix and a 3x3 matrix. In order to perform 
a matrix multiplication with two 3x3 matrices, this module 
needs to be used 3 times.  For the multiply function we have 
used the logic of complementing the negative value then we 
get the 32 bit product of two 16bit operand. This multiplier 
function is used for the matrix multiplication. 

prod1 <= multiply (row1, col11) + multiply (row2, 

col21) + multiply (row3, col31); 

prod2 <= multiply (row1, col12) + multiply (row2, 

col22) + multiply (row3, col32); 

prod3<=multiply (row1, col13) + multiply (row2, 

col23) + multiply (row3, col33); 

 
 

Fig: 6. Multiplexing for count 3-8 

3. 2.2.2 Division 
Another task is we dividing two values within the 

kalman filter. Performing division is adifficult task because 
it taks a lot VHDL code and uses a lot of resources. It was 

decided that the best approach was to use the built in core 
generator in the Xilinx software that the VHDL design was 
being written in. The core generator can create a number of 
different functions and it uses an efficient amount of 
resources. Once we created this module, weworked to 
include it within our Kalman filter design. The schematic of 
the function can be seen below: 

 

Fig: 7. Divide function 

Two 16 bit signed values are entered into the function. 
A 16 signed bit quotient is output, as well as a remainder. 

This module is very useful within our design, and was quite 
simple to implement. 

3. 2.2.3 Using Registers To Store Previous Values  

The use of registers was very important to the design. 
Since the design uses previous values needed to be stored in 
registers. Also, the values in these registers have to be 
loaded into the design along with the input. Without using 
registers and loading values in on each clock value, the 

design would cause a continuous loop. This happens 
because the output changes, the current calculations would 
change causing the output to change again, and this would 
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keep happening. So, once we knew we neede to use 
registers to store previous values, a block diagram was first 
to better understand how this could be done.The block 
diagram proved to be very helpful. A simple project was 
first created to make sure the process worked before it was 

added to the overall project. This turned out to be a success 
and we could clearly see values being stored in registers, 
and then loaded from registers. The block diagram for using 
the registers can be seen below. On the rising edge of the 
clock, or for testing purposes, when a button is pressed, flip 
flop load the previous output as well as the current input. 
After going through the next state logic, the output values 
are stored in the registers and remain their until the next 

load. 

 

Fig: 8. Main block diagram 

3.2.2.4 Using the Kalman Filter with Real Time Signals 
The goal of this project is to be able to send an analog 

signal into the project, and output the resulting analog 

signal . To successfully do this, it is necessary to use 

an analog to digital converter (ADC) and digital to 

analog converter (DAC) to stream data into and out of 

the system using analog signals. 

-- Control for temp 

process(clk) 

begin 

if rising_edge(clk) then 

if count = 0 then 

if load = '1' then 

temp <= data; 

elsif currentstate = Send then 

temp <= temp(14 downto 0) & '0'; 

end if; 

end if; 

end if; 

end process; 

-- Next State Logic 

process(currentstate, load, regcount) 

begin 

case currentstate is 

when Idle => 

if load = '1' then 

nextstate <= Low; 

else 

nextstate <= Idle; 

end if; 

when Low => 

nextstate <= Send; 

when Send => 

if regcount = 15 then 

nextstate <= High; 

else 

nextstate <= Send; 

end if; 

when High => 

nextstate <= Idle; 

end case; 

end process; 

 

Fig: 9. State machine of DAC 

 

Fig: 10. State machine of ADC 

--Next state logic 

process(currentstate, load, regcount) 

begin 

case currentstate is 

when Idle => 

if load = '1' then 

nextstate <= CSLow; 

else 

nextstate <= Idle; 

end if; 

when CSLow => 
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nextstate <= Receive; 

when Receive => 

if regcount = 15 then 

nextstate <= CSHigh; 

else 

nextstate <= Receive; 

end if; 

when CSHigh => 

nextstate <= Idle; 

end case; 

end process; 

-- Control for temp 

process(clk) 

begin 

if rising_edge(clk) then 

if nextstate = Receive then 

if count = 0 then 

temp <= temp(14 downto 0) & Sdata; 

elsif count = 3 then 

temp(0) <= Sdata; 

end if; 

end if; 

end if; 

end process; 

-- Load 12 data bits to data 

process(clk) 

begin 

if rising_edge(clk) then 

if currentstate = CSHigh then 

data <= temp(11 downto 0); 

end if; 

end if; 

end process; 

CS is what controls when a sample is taken. CS is 
active low and tells the ADC to create a 16 bit value out of 
the analog sample. Like the DAC, we created a load signal 
to tell the ADC controller that an input is desired. When 
load is high, CS goes low on the rising edge of sclk. This 
allows for the setup time to be achieved before the first 
value is input on the falling edge of the clock. Temp shifts 
in one bit at a time on the rising edge of sclk and after 15 
cycles, temp is ready to output a 16 bit value, and CS is sent 

high. The values are available on the falling edge of sclk, 
but taking them on the rising edge assures that they are 
valid. The only bit that is taken on the falling edge is the 
first bit, and this is because it is sent along with the second 
bit on the first falling edge. The values of Sdata were shifted 
into temp. 

The first step to this process is using a DAC to output 
the values of the Kalman Filter as an analog signal. The first 

thing we had to do was to choose which DAC to work with. 
The DAC is of 12-bit instead of a 16-bit DAC means that 
there is a loss of precision, but since only the least 

significant bits are lost, the difference in precision does not 
affect the performance of the kalman filter. 

 

Fig: 10. State machine of ADC to DAC 

-- Next State Logic 

process(currentstate, start, count25K) 

begin 

case currentstate is 

when Idle => 

if start = '1' then 

nextstate <= In_Out; 

else 

nextstate <= Idle; 

end if; 

when In_Out => 

if count25K = 20 then 

nextstate <= LoadHigh; 

else 

nextstate <= In_Out; 

end if; 

when LoadHigh => 

if count25K = 22 then 

nextstate <= LoadLow; 

else 

nextstate <= LoadHigh; 

end if; 

when LoadLow => 

if count25K = 26 then 

 

nextstate <= Hold; 

else 

nextstate <= LoadLow; 

end if; 

when others => 

if count25K = 2000 then 

nextstate <= In_Out; 

else 

nextstate <= Hold; 

end if; 

end case; 

end process; 
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4. Conclusion 

In conclusion, we have created a successful Kalman 
Filter, which interfaces with an ADC and DAC to form a 
complete system that streams analog data in and out. We 

also created an ADC controller and DAC controller so that 
the Kalman Filter, ADC and DAC could be integrated 
together and used for testing purposes.A complete system 
like the one we have built can be altered, and added onto, to 

perform the tasks of the Kalman Filter in the PPL(Precision 
Personal Locator) system, and can be included within the 
implementation of the actual system to process the data in 
real time. What all of this means is that another group can 
learn from everything that has been documented here to 

enhance our design to support a more complicated version 
of  a Kalman Filter. 
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